Myxoid Liposarcoma-Associated EWSR1-DDIT3 Selectively Represses Osteoblastic and Chondrocytic Transcription in Multipotent Mesenchymal Cells

نویسندگان

  • Kayo Suzuki
  • Yoshito Matsui
  • Mami Higashimoto
  • Yoshiharu Kawaguchi
  • Shoji Seki
  • Hiraku Motomura
  • Takeshi Hori
  • Yasuhito Yahara
  • Masahiko Kanamori
  • Tomoatsu Kimura
چکیده

BACKGROUND Liposarcomas are the most common class of soft tissue sarcomas, and myxoid liposarcoma is the second most common liposarcoma. EWSR1-DDIT3 is a chimeric fusion protein generated by the myxoid liposarcoma-specific chromosomal translocation t(12;22)(q13;q12). Current studies indicate that multipotent mesenchymal cells are the origin of sarcomas. The mechanism whereby EWSR1-DDIT3 contributes to the phenotypic selection of target cells during oncogenic transformation remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Reporter assays showed that the EWSR1-DDIT3 myxoid liposarcoma fusion protein, but not its wild-type counterparts EWSR1 and DDIT3, selectively repressed the transcriptional activity of cell lineage-specific marker genes in multipotent mesenchymal C3H10T1/2 cells. Specifically, the osteoblastic marker Opn promoter and chondrocytic marker Col11a2 promoter were repressed, while the adipocytic marker Ppar-γ2 promoter was not affected. Mutation analyses, transient ChIP assays, and treatment of cells with trichostatin A (a potent inhibitor of histone deacetylases) or 5-Aza-2'-deoxycytidine (a methylation-resistant cytosine homolog) revealed the possible molecular mechanisms underlying the above-mentioned selective transcriptional repression. The first is a genetic action of the EWSR1-DDIT3 fusion protein, which results in binding to the functional C/EBP site within Opn and Col11a2 promoters through interaction of its DNA-binding domain and subsequent interference with endogenous C/EBPβ function. Another possible mechanism is an epigenetic action of EWSR1-DDIT3, which enhances histone deacetylation, DNA methylation, and histone H3K9 trimethylation at the transcriptional repression site. We hypothesize that EWSR1-DDIT3-mediated transcriptional regulation may modulate the target cell lineage through target gene-specific genetic and epigenetic conversions. CONCLUSIONS/SIGNIFICANCE This study elucidates the molecular mechanisms underlying EWSR1-DDIT3 fusion protein-mediated phenotypic selection of putative target multipotent mesenchymal cells during myxoid liposarcoma development. A better understanding of this process is fundamental to the elucidation of possible direct lineage reprogramming in oncogenic sarcoma transformation mediated by fusion proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myxoid liposarcoma with cartilaginous differentiation showing DDIT3 rearrangement.

Myxoid liposarcoma (MLPS) is the second most common histologic subtype of liposarcoma. However, cartilaginous differentiation within MLPS is an extremely rare phenomenon, with only 7 cases of MLPS with cartilaginous differentiation reported to date. The majority of MLPS cases show the t(12;16)(q13;p11) translocation, resulting in the fused in sarcoma-DNA damage-inducible transcript 3 (FUS-DDIT3...

متن کامل

DDIT3 Expression in Liposarcoma Development

Liposarcomas are mesenchymal tumors containing variable numbers of lipoblasts or adipocytes. The most common entities, well differentiated/dedifferentiated liposarcoma (WDLS/DDLS) and myxoid/round cell liposarcoma (MLS/RCLS), are both characterized by genetic rearrangements that affect the expression of the transcription factor DDIT3. DDIT3 induces liposarcoma morphology when ectopically expres...

متن کامل

Cell Senescence in Myxoid/Round Cell Liposarcoma

Myxoid/round cell liposarcoma (MLS/RCLS) is the second most common liposarcoma type and characterized by the fusion oncogenes FUS-DDIT3 or EWSR1-DDIT3. Previous analysis of cell cycle regulatory proteins revealed a prominent expression of G1-cyclins, cyclin dependent kinases, and their inhibitors but very few cells progressing through the G1/S boundary. Here, we extend the investigation to prot...

متن کامل

Cytogenetics and Molecular Genetics of Myxoid Soft-Tissue Sarcomas

Myxoid soft-tissue sarcomas represent a heterogeneous group of mesenchymal tumors characterized by a predominantly myxoid matrix, including myxoid liposarcoma (MLS), low-grade fibromyxoid sarcoma (LGFMS), extraskeletal myxoid chondrosarcoma (EMC), myxofibrosarcoma, myxoinflammatory fibroblastic sarcoma (MIFS), and myxoid dermatofibrosarcoma protuberans (DFSP). Cytogenetic and molecular genetic ...

متن کامل

Utility of fluorescence in situ hybridization in sub- classifying unclassified high-grade sarcomas: A study of 40 cases using break-apart probes of EWSR1, FOXO1A, SS18 and DDIT3 genes

Objectives: In an era of rapid advances in oncologic treatment, there is continuous emphasis for a definitive classification of undifferentiated sarcomas in order to select the most appropriate therapeutic regimens against these malignancies. EWSR1, FOXO1A, SS18 and DDIT3 gene break-aparts associated with chromosomal translocations are widely used as specific molecular markers in diagnosing the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012